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Abstract—The fast growing expansion of renewable energy
increases the complexities in balancing generation and demand in
the power system. The energy-shifting and fast-ramping capabil-
ity of energy storage has led to increasing interests in batteries
to facilitate the integration of renewable resources. In this paper,
we present a two-step framework to evaluate the potential value
of energy storage in power systems with renewable generation.
First, we formulate a stochastic unit commitment approach with
wind power forecast uncertainty and energy storage. Second, the
solution from the stochastic unit commitment is used to derive a
flexible schedule for energy storage in economic dispatch where
the look-ahead horizon is limited. Analysis is conducted on the
IEEE 24-bus system to demonstrate the benefits of battery stor-
age in systems with renewable resources and the effectiveness of
the proposed battery operation strategy.

Index Terms—Battery, economic dispatch, energy storage, flex-
ible resources, integer programming, power system economics,
power system reliability, real-time operation, renewable resources,
stochastic unit commitment.

NOMENCLATURE

Indices and Sets

b Index of energy storage units.

e Index of “buckets” used in stochastic unit commit-
ment.

g Index of generators.

i Number of look-ahead time periods in the hourly-
dispatch model.

k Index of transmission lines.

n Index of buses.

s Index of scenarios.

t Index of time periods.

t Current time period in the hourly-dispatch model.

w Index of wind farms.

5 (n) For any transmission line k with “to” bus n.

0y, (n) For any transmission line k with “from” bus n.
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Set of slow generators.
For any generating unit at bus n.

Susceptance of line k.

Variable cost function for generator g.

Cost for violating the lower bound of the flexi-
ble operating range for energy storage b in time
period .

No-load cost for generator g.

Startup cost for generator g.

Cost for violating the upper bound of the flexi-
ble operating range for energy storage b in time
period .

Cost for involuntary load shedding.

Cost for violating the system operating reserve
(sum of spinning and non-spinning) require-
ment.

Cost for violating the system up and down
regulation reserve requirement.

Cost for violating the system spinning reserve
requirement.

Real power demand at node » in time period ¢.
Minimum down time for unit g.

Lower bound of the flexible operating range for
energy storage b in time period .

Minimum energy capacity for energy storage b.
Maximum energy capacity for energy storage b.
Upper bound of the flexible operating range for
energy storage b in time period .

Discount factor used in the battery cost-benefit
analysis.
Maximum power
storage b.
Maximum power output for energy storage b.
Maximum real power output for generator g.
Minimum real power output for generator g.
Maximum active power capacity for line k.
Generation for wind farm w in time period ¢ and
scenario s.

Maximum hourly ramp up rate for generator g.
Maximum hourly ramp down rate for
generator g.

Maximum 10-min ramp up rate for generator g.
Maximum 5-min ramp up rate for generator g.
Maximum 5-min ramp down rate for
generator g.

absorption for energy
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RSP Maximum shut down ramp rate for generator g.
RV Maximum start up ramp rate for generator g.
Rév S Maximum non-spinning reserve ramp rate for
generator g.
OR

ot System operating reserve requirement in time
period ¢ and scenario s.

gt Unit commitment status for generator g (0
down, 1 online), which is obtained from the
day-ahead solution.

UT, Minimum up time for unit g.

osz Minimum duration of time (hour) that the regu-
lation reserves have to be maintained.

abs Minimum duration of time (hour) that the spin-
ning reserves have to be maintained.

nim Efficiency associated with the absorbing cycle
for energy storage b.

nbo ut Efficiency associated with the generating cycle
for energy storage b.

s Probability for scenario s.

Decision Variables (Index s Denotes Scenario
and Index t Denotes Time Period)

Eypst State of charge for energy storage b.

Py Power output for generator g.

pln Power absorbed by energy storage b.

P,g;” Power generated by energy storage b.

Prot Real power flow on transmission line k.

7"557: Spinning reserve provided by generator g.

r;?{ Up regulation reserve provided by generator g.

r;’; Down regulation reserve provided by generator g.

révsf Non-spinning reserve provided by generator g.

sk, Involuntary load shedding at node n.

show Slack variable to relax the lower bound of the

' flexible operating range for energy storage b.

sfﬁ Slack variable to relax system up regulation
requirement.

35{ Slack variable to relax system down regulation
requirement 7.

s3F Slack variable to relax system spinning reserve
requirement.

sOR Slack variable to relax system operating reserve
requirement.

sgf Slack variable to relax the upper bound of the

' flexible operating range for energy storage b.

W, Wind curtailment for wind farm w.

Ugst Binary unit commitment variable for generator g (0
down, 1 online).

Vgst Startup variable for generator g (1 for startup, O
otherwise).

Wyst Shutdown variable for generator g (1 for shutdown,
0 otherwise).

Zbst Binary variable for energy storage b (1 for produc-
tion, O for consumption).

0, Bus angle for the “from” bus of transmission line k.

kst Bus angle for the “to” bus of transmission line k.

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 7, NO. 2, APRIL 2016

I. INTRODUCTION

ITH increasing concerns about climate change and the

need for a more sustainable grid, power systems have
seen a fast expansion of renewable resources in recent years.
The variability and uncertainty of renewable resources have
increased the complexities in balancing load with generation
and have introduced new challenges in regards to maintain-
ing system reliability. As a result, more flexible resources are
needed to meet the increasingly stringent ramping requirements
in the system.

Driven by the need to integrate higher penetration lev-
els of renewable energy and to reduce the costs for serving
peak demands, recent interests have been focused on energy
storage technologies. Energy storage can shift energy from
peak-demand hours to off-peak-demand hours, or absorb excess
renewable energy to provide it back to the grid when desired.
The fast-ramping capability also makes energy storage a com-
petitive resource to compensate for the variability and uncer-
tainty in renewable energy. By using energy storage, the cycling
of thermal units can be reduced, which is an advantage since
many thermal units are not designed to be ramped up and down
frequently [1].

Among all existing storage technologies, there is substan-
tial interest in batteries as an emerging solution to manage
intermittent renewable resources. Compared with thermal units,
batteries do not have a no-load cost and they are generally
considered to not have minimum power input/output levels for
charging/discharging. Compared to other storage technologies,
such as pumped storage hydro and compressed air energy stor-
age, batteries have higher power density. Even though the main
barrier with battery technologies is their high capital costs,
efforts are being made to reduce the capital costs and improve
the cost-effectiveness of different battery solutions [2].

Due to growing interests in energy storage, recent literature
analyzes the scheduling problem of energy storage and the dif-
ferent applications of energy storage in systems with increased
renewable resources [3]-[8]. The application of battery stor-
age is studied at both the transmission and distribution system
levels. In [9] and [10], the authors studied the benefits of bat-
teries in transmission systems with renewable resources using
security-constrained unit commitment (UC) models. In [11] and
[12], the application of battery storage at the distribution level is
studied. In [11], the benefits of using battery storage in micro-
grids with renewable resources are evaluated using a three-step
short-term generation scheduling approach. In [12], a unit com-
mitment model is formulated to study the problem of battery
optimal sizing in a microgrid system.

While the study of battery storage in systems with renewable
resources is not new, much of the previous work is based on
day-ahead models or short-term look-ahead scheduling models
[9]-[12]. In such look-ahead scheduling problems, scheduling
for future time periods are optimized together in one model
based on forecast information. However, with a look-ahead type
of scheduling model, the challenges associated with manag-
ing the state of charge (SOC) of the battery are not properly
captured. Different from thermal units, the dispatch of energy
storage is constrained by their SOC. In real-time operation, as
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look-ahead functionality is limited, decisions for time period #
have to be made in advance without having perfect informa-
tion about future uncertainties. An inappropriate decision made
for battery storage in the current time period could potentially
result in insufficient capacity to charge or discharge in future
time periods. These challenges are not adequately captured
in independent day-ahead or short-term look-ahead scheduling
models.

In this paper, we study battery storage under the assump-
tion that it is a system asset operated by the system operator.
We propose a two-step modeling framework to study the bene-
fit and the operation of battery storage in transmission systems
with renewable generation. The main contributions of the paper
are as follows. Firstly, we propose a flexible operational strat-
egy for the use of energy storage in real-time operations. The
proposed approach is developed to utilize the flexibility of bat-
tery storage across multiple time periods, given the limited
look-ahead functionality and future uncertainty in real-time
operation. Secondly, we extend the work in [13] to include
energy storage. While the primary motivation for [13] is to
propose an improved stochastic formulation to enhance the flex-
ibility of the commitment schedule for thermal generators, we
extend the formulation in [13] and take the advantage of its
structure to develop the proposed battery operational scheme
in this paper. Thirdly, we illustrate the benefits of the pro-
posed algorithms in a case study of the IEEE RTS system using
realistic wind power uncertainty data.

This paper is different from previous studies as follows.
While stochastic UC models have been used to study battery
storage and other forms of energy storage in [9]-[12], [14]-
[17], the studies in [9]-[12], [14]-[17] are conducted using
day-ahead or short-term look-ahead scheduling models. None
of [9]-[12], [14]-[17] addresses the challenges associated with
the real-time operation of energy storage. In [18]—[20], different
methodologies are used to improve the operational scheme of
the battery in real-time operation. However, the studies in [18]—
[20] are conducted from the viewpoint of the storage owner,
whose objective is to maximize his/her own profit. In this paper,
the study is conducted from the viewpoint of a system opera-
tor, whose objective is to optimally allocate the resources in the
system and minimize the total cost of the system. In [21], an
energy restoration mechanism is proposed to maintain the SOC
of energy storage at their preferred levels. The approach in [21]
is proposed to manage the SOC of energy storage when energy
storage is used to provide regulation reserve. However, in this
paper, the proposed approach is to improve the overall opera-
tional scheme of battery storage in real-time operation, rather
than focusing on any one type of ancillary services provided by
the battery.

The remainder of the paper is organized as follows. In
Section II, the mathematical model and the methodology are
described. The results are reported and discussed in Section III.
The conclusion and future work are presented in Section IV.

II. MATHEMATICAL MODEL AND METHODOLOGY

A two-step framework is implemented to evaluate the bene-
fits of battery storage in transmission systems with renewable

generation. In the first-step, which is referred to as the day-
ahead scheduling, a two-stage stochastic day-ahead unit com-
mitment model is formulated. In the second-step, stochastic
simulation is performed to test the day-ahead solution against
wind scenarios that are not included in the day-ahead stochas-
tic UC. The second-step is later referred to as the post-stage
analysis. The formulation used in the two-step framework is
described in the following subsections.

A. Day-Ahead Scheduling and Stochastic Unit Commitment

The stochastic UC is formulated as a mixed integer linear
program (MILP) based on the formulation in [13]. In [13], the
scheduling horizon is divided into several time blocks. Within
each time block, wind scenarios are grouped into different
“buckets” based on their average wind forecast value. The non-
anticipativity constraints are then enforced for scenarios that are
in the same bucket in each time block. The advantage of this for-
mulation is that it can provide a more flexible schedule for the
thermal generators as the commitment schedule is dependent
on each bucket rather than being the same for all the scenar-
ios in the stochastic UC. It should be noted that the day-ahead
UC model is still solved for the full 24-hour time horizon. The
introduction of time blocks is primarily to introduce flexibility
in the solution by allowing commitment decisions for thermal
units to vary between buckets and time blocks, as a function of
the wind power level.

The complete formulation of the stochastic UC with energy
storage is presented in (1)—(29), where the objective (1) is to
minimize the system total costs and the costs of security viola-
tions (e.g., the cost of involuntary load shedding and violations
of the reserve requirements). In the formulation, constraint (2)
guarantees the power balance at every bus. Constraint (3) rep-
resents the dc power flow on each line and (4) is the line-flow
limit constraint. Limits on the power output for each generator
are presented in (5) and (6). The non-anticipativity constraints
are shown in (7), where e is the index for buckets. In con-
straint (7), e = 3 (s, t) indicates that scenario s is assigned to
bucket e in time period ¢. Note that the non-anticipativity con-
straints are only modeled for the slow units and enforced for
each individual bucket, i.e. not across all the scenarios. The
minimum up and down time constraints are shown in (8)—(10).
Constraints (11)—(14) represent the ramp rates for regulation,
spinning and non-spinning reserves for thermal units. In this
paper, regulation reserve refers to the reserve that is used to
follow the automatic generation control (AGC) signal. For spin-
ning and non-spinning reserves, they are modeled to represent
contingency reserve, which is used to respond to contingencies
in the system. The hourly ramp rate constraints are shown in
(15) and (16). The model for battery is shown in (17)—(24).
Constraints (17)—(20) represent the limits on regulation and
spinning reserves provided by batteries. Constraints (18) and
(20) indicate that a battery should be able to maintain its output
for duration of af and o hours to be qualified to provide spin-
ning and regulation reserves respectively. Constraint (21) is the
power balance constraint for energy storage. Regulation reserve
variables are included in (21) to estimate the change in SOC as
aresult of the deployment of the regulation reserves. We ignore
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the impact of the wind penetration level on the requirement
for regulation reserves, and assume that 20% of the sched-
uled regulation reserve capacity will be activated regardless of
the wind penetration levels studied. The limits on consump-
tion and production for the battery are presented in (22) and
(23). Constraint (24) represents the energy capacity for the
battery. The constraints for system-wide regulation and spin-
ning reserve requirements are presented in (25)—(29). In the
paper, the regulation reserve requirement is set to be 2% of the
load, while the operating reserve (sum of spinning and non-
spinning reserve) is required to be greater or equal to the single
largest generator contingency. It is also required that half of the
system operating reserve should come from spinning reserve.
The reserves needed to compensate renewable uncertainties
are addressed endogenously by the stochastic UC model. The
reserve requirement constraints can be violated for a predeter-
mined penalty price, as reflected in the objective function.
Minimize:
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B. Post-Stage Analysis and Hourly-Dispatch Problem

In the second-step, which is referred to as the post-stage anal-
ysis, stochastic simulation is performed to test the day-ahead
solution against wind scenarios that are not included in the day-
ahead UC. In the post-stage analysis, only the uncertainty in
renewable generation is considered; load forecast uncertainty
and generator outages are not included. The post-stage analysis
is formulated using an hourly-dispatch model. The complete
formulation for the hourly-dispatch model is presented in (30)—
(33). A deterministic formulation is used and only one scenario
is included in each dispatch problem. In (30)—(33), index ¢’ rep-
resents the current time period and 7 represents the number of
look-ahead time periods included. Each dispatch run solves for
the current hour and looks 7 hours ahead (i=1 as default assump-
tion), for which a persistence wind power forecast is assumed.
The objective is to minimize the total cost in the current hour
and the look-ahead period, as shown in (30). The hourly dis-
patch problem is solved sequentially for 24 hours using a rolling
window. The hourly-dispatch model is formulated to approxi-
mate the real-time operation, but with a lower time resolution
than what is typically used in U.S. energy markets. The com-
mitment schedule for slow (slow-start) units is given by the
day-ahead UC, as shown in (31). Parameter 14 is the commit-
ment status obtained from day-ahead UC. Fast (fast-start) units
are allowed to change commitment status in the hourly-dispatch
problem. In the paper, slow units are defined as the generators
that have minimum up and down time greater than one hour.
Fast units are defined as the generators that have minimum up
and down time smaller or equal to one hour. A persistence wind
power forecast is assumed for the look-ahead period, as shown
in (33). The other constraints for the hourly-dispatch model are
similar to those used in the day-ahead UC.

Minimize:

t+z t+z
SU 'u
c Ly, +Cy Vgy T+ g g
Z Zt v (Por) gt gt t—p

t'4i . _ _
+ § (CUR+S£3+ + CUR SiR + CUSPStSP + C'UORStOR)
t=t’

(30)
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Subject to:
Ugy = Ugt, Vg € Qas, t € {t',...,t' +1i} (31)
Constraints (2)—(6), (11)—(29),t € {¢/,...,t' +i} (32)
pyind = pVind vw,t € {t' +1,...,¢' + i} (33)

C. Battery Operation With a Fixed Operating Schedule

To address the limited look-ahead functionality in real-time
operation, one approach is to use the solution obtained through
a look-ahead scheduling stage. However, as the SOC is a
second-stage decision in the day-ahead stochastic UC, one bat-
tery schedule is obtained for each scenario. Therefore, in the
post-stage analysis, for each wind scenario to be tested, the
most appropriate battery schedule should be selected from
the day-ahead solution. In this paper, the battery schedule
is selected based on the similarity between the post-stage
wind scenario and the day-ahead wind scenario. The similarity
between the two wind scenarios is measured by the Euclidean
distance. Therefore, for each post-stage wind scenario, s, the
day-ahead wind scenario S that is closest to it is identified.
Then the battery schedule that corresponds to scenario 5q is
used in the post-stage scenario s. Denote this battery schedule
as 5, where E5, is a vector with each element representing a
target SOC in each time period.

For each post-stage scenario, the corresponding battery
schedule has to be determined before the first time period is
solved. To reflect the fact that wind generation cannot be per-
fectly forecasted while not over-complicating the simulation
process, the wind generation profiles in the first six hours of
each post-stage scenario are used to determine the closest day-
ahead wind scenario. The underlying assumption is that the
wind forecast for the first six hours has relatively low forecast
errors and can be used as an acceptable approximation to deter-
mine which day-ahead schedule should be used. The battery
schedule obtained using the above method is later referred to as
the “fixed schedule” and will be used as a benchmark approach
to be compared with our proposed method.

D. Battery Operation With a Flexible Operating Range

Next, we propose an approach that aims at flexibly operating
battery storage in real-time operation while taking into account
future uncertainties. Two goals are to be achieved by using the
proposed method. First, the approach should be able to pro-
vide instructions to the battery of when to charge, discharge,
and provide reserves, so that the battery will have enough capa-
bility in current as well as future time periods. Second, the
proposed method should provide enough room for adjustment
in real-time operation, such that the fast-ramping capability of
the battery can be utilized when renewable generation devi-
ates away from its planned production. The proposed method
is referred to as the flexible operating range approach, and con-
stitutes an improvement to the fixed-schedule approach. In the
proposed method, an operating range is determined for the bat-
tery in each time period. The fundamental idea of the proposed
method is to use the day-ahead UC solution to generate an oper-
ating range around the fixed schedule for the battery in real-time
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operation. The detailed procedure for determining the flexible
operating range is described as follows.

Firstly, obtain a fixed schedule for the battery for each post-
stage scenario s using the procedure described in the previous
subsection. This is done prior to the beginning of the simula-
tion for each post-stage scenario. Denote this fixed schedule as
Es,. Secondly, prior to solving the hourly-dispatch problem for
each time period, find the day-ahead scenarios that are in the
same bucket as the post-stage scenario s and denote the corre-
sponding day-ahead battery schedules as Fs, , ..., E5 _ . Then
the upper and lower limit of the flexible operating range are
determined as

E)P =max {Es,, B, ,.....Es5, ,} Vbt (34)
EL‘”“ = min { B, , 1} B Wbt (35)
EBEY — stov < By < ngf sb’f,Vb,t (36)

where EbL’g’“’ and Eéj P are the lower and upper bound for the
flexible operating range in time period ¢ for the battery. The
flexible operating range is formulated as a pair of limits on
SOC. Variables s{;‘t’w and s” b, ¥ are slack variables used to relax
the flexible operating range when necessary by incurring a
penalty cost. The penalty cost is computed as

Low _Low Out
E E (Cbt Sbt

For the proposed flexible operating range approach, the
penalty cost term shown in (37) is added to the objective func-
tion of the hourly-dispatch problem (30). In this paper, cLow
and cbt are both assumed to be the highest marginal cost of
all the online slow units. The reason for using such a penalty
price is that constraint (36) should be relaxed if it can avoid the
commitment of an additional fast unit, which typically happens
when all the slow units are fully dispatched. As turning on an
additional fast unit will incur not only marginal fuel cost but
also no-load cost and start-up cost, the commitment of an addi-
tional fast unit is expected to be more expensive than using the
energy stored in the battery. The procedure to implement the
proposed approach in the post-stage analysis is summarized in
Fig. 1.

+cUPsUP ) (37)

E. Renewable Scenario Generation

Wind power forecasts are affected by several sources of
uncertainty that include data and physics modeling. In this
study the wind scenarios account for the errors in the numerical
weather predictions (NWP) and are generated using Gaussian
process (GP) regression [23]. The GP is built to estimate the dif-
ferences between a state-of-the-art NWP forecasts, WRF v3.6
[24], and observations (corresponding to NOAA Surfrad net-
work). The NWP forecasts are initialized using North American
Regional Reanalysis fields. Simulations are started every day
during August 2012 and cover the continental U.S. on a grid
of 25x25 Km. A GP is calibrated to reproduce the discrep-
ancy between forecasts and observations at 10 m height (mean
and variance). Samples from this distribution are extrapolated
from 10 m to 100 m hub height and passed through a stan-
dard power curve to obtain the wind scenarios for representative
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’ Scenario s=1 ‘

Determine a fixed schedule for current
—>| scenario s using the approach described in
Section II. C

Y

’ Time period =1 ‘

|

Determine which bucket does the current
scenario s belong to

]

Read in the day-ahead UC schedule for
slow units from the corresponding bucket

}

Find the day-ahead scenarios that are in
the same bucket as the current scenario s

l

Use equations (34)-(36) to determine the
flexible operating range for the battery

l

Solve the hourly-dispatch
problem

s=s+1 Yes
T_N

Yes

v
’ Calculate the metrics ‘

Fig. 1. Flowchart for the implementation of the proposed approach in post-
stage analysis.

locations [25]. In the paper, only wind generation is consid-
ered. Other renewable resources, such as solar generation, are
not considered in the study, but could also be represented in the
model.

F. Experimental Setup

Firstly, wind scenarios are generated based on the approach
outlined above. The scenario reduction approach in [26] is
applied to select a predetermined number of scenarios to be
used in the day-ahead UC. Secondly, the stochastic UC is
solved with the reduced scenario set. The day-ahead solution
is then tested against wind scenarios that are not included in the
day-ahead UC (i.e. out-of-sample) in the post-stage analysis. In
the post-stage, the scenarios have equal probabilities. Lastly, the
performance of the proposed flexible operating range approach
is compared with other benchmark methods.

III. CASE STUDY

The case study is conducted on the IEEE RTS 24-bus sys-
tem [27], [28]. The RTS 24-bus system has 35 branches, 32
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TABLE 1
SUMMARY OF THE PARAMETERS USED FOR BATTERY STORAGE
nlﬂ nOut Pbln_max’ Pbout_max E;/Iin Eglzzx
brilb MW) (MWh) (MWh)
0.9 50 30 150

generators, and 21 loads. The load in the system is decreased
such that the peak load is 2565 MW. Similar to [29], the capac-
ity of line (14-16) is reduced to 350 MW to create congestion in
the system. One 50 MW/150 MWh battery unit is placed at bus
13, i.e. at the location of one of the two wind farms in the sys-
tem (the second is at bus 22). Placing the battery at a wind farm
location is an existing practice [30]-[32]. By installing battery
storage at a wind farm location, the battery could be used to
moderate the output of the wind farm. Moreover, co-location of
storage and a wind farm oftentimes reduce interconnection and
investment costs. The parameters used for the battery are sum-
marized in Table I. Note that the capacity of the battery is only
about 2% of the system peak load. In the day-ahead UC, an ini-
tial SOC of 90 MWh is assumed for the battery. It is required in
the day-ahead UC that at the end of the day, the SOC of the bat-
tery should be the same as the initial SOC. Parameters abs and
af are assumed to be 0.5, which indicates that battery storage
should have enough energy to maintain its output for half an
hour in order to be qualified to provide spinning and regulation
reserves.

Two hundred wind scenarios are generated for day 236 in
2012 and 40 scenarios are selected for the day-ahead UC for
two locations in the Western United States. In the post-stage
analysis, 150 scenarios are used to test the day-ahead solution.
The simulation is conducted for wind penetration levels from
15% to 30%, with an increment of 5%. The wind penetration
level is defined as the ratio of daily total wind generation to the
daily total demand. Wind curtailment is allowed when the sys-
tem cannot accommodate all of the available wind production.
The cost of involuntary load shedding is assumed to be 9000
$/MWh, and the cost for violations of reserve requirements is
assumed to be 3300 $/MWh. In the stochastic UC, the planning
horizon is divided into four time blocks, with each to be six
hours. In each time block, two buckets are modeled. Wind sce-
narios are assigned to each bucket based on their average wind
generation in the corresponding time block.

A. Evaluation of the Benefits of Battery Storage

1) Day-Ahead Scheduling: In the day-ahead scheduling
stage, the stochastic UC is solved. Four metrics are used to
evaluate the operational benefits of battery storage, which are
expected involuntary load shedding, expected wind curtailment,
expected reserve requirement violations and expected total
generator commitment hours (ETCH). The metric “expected
reserve requirement violations” is the sum of violations of
regulation and operating reserves. The metric “expected total
generator commitment hours” is computed as

ETCH =) (38)

TsUgst
gts °9°

which is the weighted average of the sum of the commitment
hours for all the generators in a day. If this metric is low, it
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TABLE 11 TABLE IV
EXPECTED SYSTEM RESULTS FOR DAY-AHEAD UNIT COMMITMENT EXPECTED SYSTEM RESULTS FOR POST-STAGE ANALYSIS
Involuntary . EICH | ETCH Involuntary . EICH | EIGH
. Wind Reserve for for . Wind Reserve for for
Wi Load | oesthment | Violat sl Fast V] Load | o oiiment | Violati sl Fast
% Shedding urtaillment 10lations o_w a_s % Shedding urtailmen 10lations qw a.s
(MWh) (MWh) (MWh) Units Units (MWh) (MWh) (MWh) Units Units
() (1)) () ()]
With Battery With Battery
15% 0.0 4 0.0 297 144 15% 0.0 0 4.0 297 145
20% 0.0 99 0.4 282 140 20% 0.0 7 9.0 282 145
25% 0.0 221 0.2 271 137 25% 0.4 130 9.9 272 140
30% 0.0 1036 0.1 278 135 30% 2.0 741 30.4 279 138
No Battery No Battery
15% 0.0 5 0.3 369 144 15% 0.0 0 5.1 367 146
20% 0.0 56 54 345 147 20% 0.0 8 16.1 339 147
25% 0.0 468 4.1 331 147 25% 0.0 124 22.4 321 147
30% 0.0 1460 29 311 146 30% 1.3 1009 31.0 313 147
TABLE III TABLE v

EXPECTED SYSTEM TOTAL COSTS AND COST SAVINGS FOR
DAY-AHEAD UNIT COMMITMENT

Wind | Total Cost with | Total Cost without S;i/?rsltgs Szgl(i)rsltgs
% Battery ($) Battery ($) 5 %)
15% 806,287 930,440 124,154 13.3%
20% 765,307 887,480 122,173 13.8%
25% 733,779 849,963 116,184 13.7%
30% 712,808 827,570 114,762 13.9%

means that thermal units are committed less frequently in the
system. The metric ETCH is shown for slow units and fast
units separately. As shown in Table II, with battery storage in
the system, the ETCH for the slow units is much lower than
that in the cases without battery storage. With battery storage
in the system, fewer slow units are needed to address the vari-
ability in renewable resources. At the same time, the need for
fast units to compensate the uncertainty in renewable genera-
tion is also slightly reduced. Meanwhile, more wind generation
is dispatched in general when battery storage is included in the
system due to reduced wind curtailment. The expected system
total costs for the cases with and without battery storage are
presented in Table III. It is shown in Table III that the sys-
tem total costs are significantly reduced when battery storage
is included. The day-ahead result shows that the battery is a
valuable resource in helping integrate high levels of renewable
resources, especially when considering that the battery in the
system is relatively small compared to the system load and wind
generation. As renewable penetration levels increase, the value
of the flexibility that battery storage provides also increases.

2) Post-Stage Analysis With the Fixed Operating Schedule:
In the post-stage analysis, we first test the fixed-schedule
approach, where the battery is not allowed to deviate from the
schedule. The same metrics used in the day-ahead scheduling
stage are used in the post-stage analysis. The results for post-
stage analysis are reported in Table IV and Table V. From
Table IV and Table V, the same trend as in the day-ahead
scheduling stage can be seen, as battery storage can help dis-
patch more wind generation; it decreases the total number of
hours that slow and fast units are committed and reduces the
system total costs. The security violations are also reduced, in
general, for the cases with the battery. The results in Table V

EXPECTED SYSTEM TOTAL COSTS AND COST SAVINGS FOR
POST-STAGE ANALYSIS

Wind Total Cost with Total Cost without S:i/(i)rsltgs S;i/(;rsltgs

0,

% Battery ($) Battery ($) 5 %)
15% 847,874 971,823 123,948 12.8%
20% 827,291 943,955 116,664 12.4%
25% 808,768 936,378 127,610 13.6%
30% 876,424 957,140 80,715 8.4%
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Fig. 2. Boxplot of total system costs for each case in the post-stage analysis.

indicate that the cost savings are similar for the three lowest
wind penetration levels, but lower for the 30% wind scenario.
At 30% wind penetration level, the increase in the violation cost
offsets the reduction in operating cost, which causes the system
total cost for the 30% wind scenario to be higher than that of the
25% wind scenario. This is also a result due to out-of-sample
testing, i.e., the stochastic program takes into consideration a
subset of potential scenarios whereas the post-stage analysis
tests the proposed solution against a wider range of potential
scenarios.

Fig. 2 presents a boxplot of the total system costs for each
case in the post-stage analysis. The edges of the box are the 25th
and 75th percentiles and the whiskers represent the maximum
and minimum without considering outliers. The horizontal red
lines represent median values and outliers are shown in red “+”.
The plot shows the median value as well as the variation in
samples of system’s total costs for each case. The cases labeled
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“With x%” are the cases with the battery for “x%” wind pen-
etration level; the rest are the cases without the battery. From
Fig. 2, it can be noted that with the battery in the system, both
the maximum and minimum value of the total system costs are
reduced. Also, for wind penetration levels of 15%, 20% and
25%, the boxes for the cases with battery storage span much
shorter ranges than those of the cases without battery storage.
This result indicates the variations of the total system costs
are also lower for the cases with battery storage than those of
the cases without battery storage if not considering the out-
liers (the red “+7). Though not shown, an ANOVA test was
also conducted to confirm that the expected costs are signifi-
cantly different between the two cases with and without battery
storage.

Comparing the results for day-ahead scheduling to those for
post-stage analysis, it can be observed that the cost savings by
having battery storage in the system are lower in the post-stage
analysis than those in the day-ahead scheduling. The reason is
as follows. The post-stage analysis is formulated to approxi-
mate the real-time operation, where each dispatch problem is
solved with limited foresight of future information (i.e. one
hour look-ahead forecast) using a rolling horizon. When the
realized wind generation deviates from the day-ahead forecast,
the day-ahead battery schedule may not be able to address the
unexpected deviation. Therefore, as shown in Table IV, the
system reserve violations are higher in the post-stage analy-
sis than those in the day-ahead scheduling, especially at higher
wind penetration levels. As the flexibility of the battery can-
not be fully utilized with a fixed-schedule approach, reserve
requirements are violated to ensure the feasibility of the prob-
lem. Therefore, as renewable penetration level increases, a more
flexible operating approach is needed for battery storage.

It should be noted that this work simplifies the generation
scheduling process adopted in industry today, where a short-
term unit commitment is usually solved between the day-ahead
scheduling stage and the real-time economic dispatch stage
[36]. This is also one of the reasons that the benefit provided
by the battery is lower in the post-stage analysis than that in
the day-ahead scheduling. During such an intermediate stage,
the day-ahead schedule for the battery could be updated based
on the short-term wind forecast. Even though such a short-term
unit commitment stage is not formulated in this paper, the two-
step framework still captures the main challenges in scheduling
battery storage in a system with increased uncertainties: 1) real-
time operation has limited look-ahead functionalities and 2) the
schedule obtained from a look-ahead scheduling process may
not be able to fully utilize the flexibility of battery storage when
uncertainties increase.

3) Cost-Benefit Analysis of the Battery: In this subsection,
a cost-benefit analysis is performed to study if the cost sav-
ings achieved by using the battery can offset the investment cost
of the battery. The cost-benefit analysis is performed using the
results from the day-ahead stage for the 20% wind penetration
level. The same cost-benefit analysis could also be done based
on the real-time results from the post-stage analysis.

The day-ahead cost savings from six representative days
are summarized in Table VI. The yearly total cost saving is
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TABLE VI
SUMMARY OF DAY-AHEAD COST SAVINGS ($K)

D219 | D225 | D230 | D232 | D236 | Doas | 6:D2y | Yearly
Sum Sum
103 | 110 | 124 | 122 | 122 | 102 | o684 | 1619
TABLE VII
EXPECTED DISCHARGING CYCLES FOR THE BATTERY
D219 | D225 | D230 | D232 | D236 | Doaz | 6:D2y | Yearly
Sum Sum
21 | 30 | 29 | 30 | 23 | 28 | 162 | 9882

computed using the cost savings from the six representative
days. In Table VI, “D219” represents representative day 219
and similarly for the other representative days.

As battery storage suffers from degradation effects, the
impact of cycling on the life time of the battery should be taken
into account. The expected daily and yearly discharging cycles
are computed for the battery and summarized in Table VII. The
daily expected discharging cycle is computed using (39). The
maximum depth of discharge (DOD) of the battery is assumed
to be 80%, since the battery has a minimum energy level of 30
MWh and a maximum energy capacity of 150 MWh. As shown
in (39), the daily expected discharging cycle is calculated on an
aggregated base. It is assumed in the cost-benefit analysis that
the life time of the battery is sensitive only to the total num-
ber of equivalent full discharging cycles, i.e. the DOD of each
discharging cycle has little to no effect on the life time of the
battery. This is a reasonable assumption for some battery tech-
nologies [17], [34]. Since the initial SOC is required to be the
same as the final SOC in the day-ahead UC, the number of daily
equivalent full discharging cycles will be the same as the daily
equivalent full charging cycles in each scenario. Note that the
energy used for deployment of spinning and regulation reserves
is not counted in (39).

POut Out
Daily_Discharge_Cycle = m Z %
s By - K,

(39)

Assume the battery used in the study is a lithium-ion (Li-
ion) battery. The cycle life for the battery is obtained from the
DOE/EPRI energy storage handbook [33]. In [33], such batter-
ies are assumed to last 15 years with a daily cycle, i.e. the total
number of cycles is assumed to be 365 x 15 = 5475 cycles.
Assuming the battery can be fully discharged at most 5475
cycles, the expected life time (number of years) in our analysis
can be calculated using the expected yearly discharging cycles
obtained from Table VII. Hence, the expected life time for the
battery is calculated as

4
ExpLifelTime = 5475 ~ 5.5 Years.

4
988.2 (40)

This result indicates that the battery is expected to last for
about five and half years for the duty cycle in our case study.
Assume the yearly cost saving obtained by using the battery is
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Fig. 3. Battery breakeven costs versus discount factor used in the cost-benefit
analysis.

the same for the five and half years and that the discount factor
is 6% per year. The present value, PV, of the system cost saving
over this period is computed as

pv=%" yearly_cost_saving _ o1 a7 407(s). (1)
t (14 ia)

A wide range of cost estimates exist for Li-ion batteries [33]—
[35]. In [33]-[35], the capital costs for batteries are calculated
with the assumption of a specific battery technology and a
specific configuration of the battery (power rating and energy
capacity). In the paper, we assumed a capital cost, CC, of 3,000
$/kW for the battery. This number is estimated based on the
capital costs for Li-ion batteries with similar power ratings and
energy capacities that reported in [33]-[35]. With a capital cost
of 3,000 $/kW, the net present value, NPV, of the battery is
calculated as shown in (42):

NPV =PV —-CC =191, 387,407 — 150, 000, 000
= 41,387,407 ($) (42)

We also calculate the breakeven cost for the battery, i.e. the
capital cost that would give a zero NPV. The breakeven cost is
found to be 3,828 $/kW. The breakeven cost of the battery is
plotted versus different values of discount factors in Fig. 3: it
ranges from about 3,943 $/kW to 3,612 $/kW when the value
of discount factor is selected in the range of 0.05 to 0.08.

The results of the cost-benefit analysis indicate that battery
storage is beneficial to this system when current capital cost
estimates, the degradation effect and its impact on the lifetime
of the battery, are considered. However, it should be noted that
as the costs for batteries vary depending on the battery con-
figuration and technology, the conclusion may not apply to all
battery storage technologies. Moreover, the estimated benefits
only apply to the specific test power system, which is small and
has high fuel costs. Larger systems with lower fuel costs are
likely to see lower benefits of energy storage. However, with
that being said, the study in this section provides an adequate
analysis to demonstrate the benefits and the cost-effectiveness
of battery storage in systems with renewable resources. As the
cost of battery storage is expected to be further reduced in the
next five to ten years [2], the benefits of battery storage will be
more prominent in the future.

30% m D243
= m D232
% 25%
i m D236
§ 20% = D230
15% m D225
t t t = D219
2.0% -1.0%  0.0% 1.0%  2.0% 3.0%  4.0%
Cost Saving%

Fig. 4. Cost savings in percentage of the proposed method to the fixed-schedule
method.

B. Evaluation of the Proposed Flexible Operating Range

To better utilize the flexibility of battery storage in systems
with increased renewable resources, the flexible operating range
approach is proposed. In this subsection, the performance of the
proposed method is compared with the other three benchmark
methods. The first benchmark compared is the fixed-schedule
approach, presented in Section II.C. The second benchmark
is referred to as the no-schedule approach. In the no-schedule
approach, no predetermined schedule is provided for the bat-
tery. The dispatch of the battery in each time period is only
based on the system condition in time period ¢ and #+1. The
decisions made in time period ¢ do not take into account
any forecast information beyond time period 7+41. The third
benchmark is referred to as the 3-hour look-ahead benchmark.
In this benchmark, similar to the no-schedule benchmark, no
schedule is provided for the battery. However, different from
the no-schedule benchmark, the 3-hour look-ahead benchmark
includes a look-ahead horizon of three hours, instead of the
one hour modeled in the other benchmarks. A persistence wind
power forecast is assumed, i.e. the wind generation in the look-
ahead hours is the same as the wind generation in the current
hour. For the no-schedule benchmark and the 3-hour look-ahead
benchmark, the model described in Section I1.B is used.

The performance of the four approaches is evaluated using
wind scenarios for six days in 2012. For each representative
day, the day-ahead stochastic UC is solved and the hourly-
dispatch problem is solved with 150 different wind scenarios.
The generator commitment schedules for slow units used in the
three approaches are the same. The expected cost savings in per-
centage for the proposed approach to the benchmark methods
are presented in Fig. 4 to Fig. 6 respectively.

As shown in Fig. 4, compared to the fixed-schedule bench-
mark, the proposed approach can provide about 1% to 3%
cost savings for most of the cases. The cost savings tend to
be larger at higher wind penetration levels than those for the
15% penetration level. This is because as wind penetration
level increases, the intermittency in wind generation increases
in terms of MWs. Therefore, at higher wind levels, with the
proposed approach, the battery can be used to compensate for
the deviation in wind generation and provide more cost sav-
ings. In Fig. 4, there is only one case (D225, 15%) in which the
performance of the proposed method is worse than the fixed-
schedule case; and the cost difference is about 1%. The cause



694

u D243

30%
mD232
25% uD236
2 1 D230

2 20%
3 = D225
Z 15% mD219

0.0% 5.0% 10.0% 15.0%
Cost Saving%

Fig. 5. Cost savings in percentage of the proposed method to the no-schedule
method.
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Fig. 6. Cost savings in percentage of the proposed method to the 3-hour look-
ahead method.

of the cost degradation in the case of (D225, 15%) is explained
as follows. For day 225, at the day-ahead stage, the battery is
scheduled to provide a large amount of spinning reserves in
some time periods when wind generation suddenly decreases.
As wind generation in the post-stage scenarios also has a large
decrease in the same time periods as that in the day-ahead
stage, no reserve violation occurs in the cases where the fixed-
schedule approach is used; since the fixed-schedule approach
implements the schedule determined at the day-ahead stage
and can hence “anticipate” the sudden drop in wind genera-
tion. However, for the proposed approach, as it cannot fully
“anticipate” the occurrence of large wind generation deviations,
the battery may have been over utilized during prior time peri-
ods and thus does not have enough capability to provide the
required amount of spinning reserves in those time periods. To
further evaluate the performance of the proposed approach, in
Table VIII, the six-day cost savings of the proposed approach
compared to the fixed-schedule approach for the 15% wind
penetration level is presented. As shown in Table VIII, the
proposed approach can provide a six-day total cost saving of
34,273 dollars, or 1.1%. This result indicates that even though
the proposed approach may be out-performed by the fixed-
schedule approach in some cases, the proposed approach is
more effective than the fixed-schedule approach overall.
Compared with the no-schedule method, the costs savings
provided by the proposed method are higher than those of the
fixed-schedule. This is consistent with our intuition, since the
no-schedule method does not account for future uncertainties
when making decisions for the battery in each time period.
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TABLE VIII
S1X-DAY COST SAVINGS OF THE PROPOSED METHOD COMPARED TO THE
FIXED-SCHEDULE METHOD FOR 15% WIND PENETRATION

6-Day | 6-Day

D219 D225 D230 D232 | D236 D243 Sum Sum

®) (%)

4,584 | -8,000 | 12,024 | 11,054 | 4,277 | 10,333 | 34,273 1.1%
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Fig. 7. Illustration of the proposed flexible operating range approach (Day 236,
scenario 3, 30% wind level).

The high cost saving shown in Fig. 5 is a result of the high
security violations in the no-schedule case and the high penalty
prices used in the simulation, since again, the decisions in the
no-schedule benchmark are made based on only the current
operating condition. In Fig. 6, the cost savings compared to
the 3-hour look-ahead benchmark is presented. It can be seen
from Fig. 6 that except for two cases, the proposed approach
has better performance than the 3-hour look-ahead approach.
Of course, the look-ahead approach would yield better results if
a better forecast was used than persistence. But still, the result
has demonstrated the effectiveness of the proposed approach
in utilizing the flexibility of battery storage. In fact, the pro-
posed approach could also be improved by utilizing a longer
look-ahead horizon.

In Fig. 7, the result for day 236, scenario 3 with 30% wind
penetration level is presented. The dashed lines in Fig. 7 rep-
resent the operating range determined by the proposed method,
which is modeled as a pair of limits on the SOC of the battery.
The red solid line (with square markers) shows the schedule
obtained by the proposed approach. The blue solid line (with
triangle markers) represents the schedule obtained by the fixed-
schedule method. In Fig. 7, for the time periods in which the
SOC of the battery is outside the limits, such as hour 20, 21 and
22, the SOC limits are relaxed by incurring the penalty cost.
For most of the time periods, the battery is operated within the
range provided by the proposed method. As the flexible operat-
ing range is obtained using the day-ahead schedules, it provides
a policy for the battery of when to discharge and charge. As
shown in Fig. 7, the battery is forced by the limits to increase
its SOC level during hours 10 to 13, and to decrease its SOC
level during hours 14 to 15. Compared with the fixed-schedule
approach, the proposed method can provide an operating range
for the battery in each time period rather than a fixed operat-
ing point. As renewable generation deviates from forecasts, the
battery is allowed to be operated within the operating range,
and even possibly exceed the range, to compensate for the
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Fig. 8. Schedule for the battery using the proposed method (Day 236, scenario
3, 30% wind level).

uncertainties in renewable generation. By using the proposed
approach, the flexibility of the battery storage can be better
utilized to address the intermittency in renewable resources.

In Fig. 8, the energy and ancillary services scheduled for
the battery for day 236, scenario 3 with 30% wind level are
presented. The blue solid bars in Fig. 8 represent the power
output of the battery, where positive value indicates discharg-
ing and negative value indicates charging. From Fig. 8, it can
be seen that the battery is scheduled mainly to provide ancil-
lary services, which is because of its fast-ramping capability.
Also, it can be noted from Fig. 8 that the ancillary services
provided by the battery are sometimes larger than its maxi-
mum power rating of 50 MW. This result occurs because the
battery requires a short transition time between charging and
discharging mode. In charging mode, a battery can stop charg-
ing and transition to discharging mode to provide up reserves.
The maximum up reserve that the battery can provide in this
case is Pl + PO This result suggests that the flexi-
bility of battery storage will be more valuable when providing
ancillary services.

IV. CONCLUSION

With its energy shifting and fast-ramping capabilities, battery
storage has a great potential to facilitate the integration of high
levels of renewable resources. In this paper, a two-step frame-
work is used to evaluate the benefits of battery storage in power
system operation with renewable resources. In the day-ahead
scheduling stage, it is shown that battery storage can decrease
the curtailment of wind generation, reduce load and reserve
shortfalls as well as the commitment of thermal units, and lower
the total system costs. Moreover, the cost-benefit analysis indi-
cates that battery storage is a cost effective solution for the test
system. In the post-stage analysis, the challenge with operating
a battery in real-time with limited look-ahead functionality is
illustrated. The result in the post-stage analysis shows that using
a fixed-schedule approach cannot make full use of the flexibility
of the battery in real-time operation. To address this problem,
we propose a flexible operating range approach for battery stor-
age. The case study demonstrates that the proposed approach is
more effective in operating battery storage in real-time dispatch
compared to the fixed-schedule, no-schedule, and look-ahead
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benchmark methods. The proposed flexible operating range
method is able to take advantage of the flexibility of energy
storage to provide more cost savings compared with the other
benchmark methods.

Directions for future work include the investigation of a
wider set of strategies for real-time battery storage operations,
possibly based on the marginal value or opportunity cost of
using the battery for a given SOC. Moreover, we plan to develop
a better representation of the electro-chemistry in battery stor-
age, e.g. to capture how power limits and losses may depend on
the SOC, and also a more detailed representation of degradation
and life-time impacts of the battery under different operational
schemes.
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